
Your engineering team will love 
automated testing eventually 
 
 

Why do we test our code? 
Many small teams and young companies cut corners on testing. 
When senior management sees a working product, it’s often 
difficult to explain the importance of testing coverage when you 
could be running off to build the next cool feature. 

The reality is that as you build more features, your product 
becomes more complex. As your product becomes more 
complex, it becomes harder to test. As your product becomes 
harder to test, crashes become more frequent. You can see the 
problem. 

If a feature is important for our product, it must be tested 
automatically. Apart from ensuring that no product value is lost 
over time, we invested in automated testing for the following 
reasons: 

• Testing can become boring. When you’ve just built a new 
feature, tapping every button or field can be a pleasure — 
but it’s unlikely to be a pleasure after the 100th or 1000th 
time. We use automation to reduce repetition and keep our 
team fresh and motivated 



• We build tests to save our time. It’s easy to launch a new 
instance of the app to test the login screen. But how would 
you test a popup that is presented to a user only under 
complex conditions that must be recreated manually? 

• We build tests so that we can focus on things that 
matter. 80% of our testing time is devoted to automation. 
The remaining time is devoted to testing the hardest cases 
manually, so that we don’t repeat. 

• We build tests to make our code clean. Building 
automated tests requires a modularised, loosely coupled 
project structure. You need to write code that makes any 
dependency easy to replace and any data easy to mock. 
This makes your code easy to test and maintain by multiple 
engineers working in parallel. 

 
 

How to test 
There are many ways to test a big project. We use a variety of 
approaches, depending on the situation: 
 
 

Unit testing 
 
The most basic method of testing your code. Unit tests are most helpful 
in parts of the code that affect business logic. They verify that algorithms 
work correctly, identify edge cases and ensure graceful failure. 
 
 



We use a basic toolset to build unit tests: JUnit (default testing 
framework), Mockito (passing fake objects into tested 
classes), Jacoco (test coverage report). Our code is written in 
MVP (Model-View-Presenter) architecture, and uses Dependency 
Injection pattern (Dagger 2). 
 
 

Integration tests 
While unit tests focus mostly on plain Java code, we often need 
to test a whole component like an application screen or 
background service. 

In this situation we don’t build detailed, Robolectric-powered 
unit tests that check every single behaviour (is this button 
disabled under given condition? Is the text set correctly?). Instead, 
QA and software engineers build a controlled environment for 
the tested component and then validate whether it behaves in 
the way we expect. 

Our transaction status screen, for example, has many different 
UI states. Instead of preparing dozens of tests, we prepare API or 
Database mocks for every state and provide them 
via DaggerMock to screen dependencies. Then Android 
Instrumentation tests, together with Espresso, do assertions on 
every single screen state. 
 
 

End-to-end testing 



End-to-end testing is the final stage of our QA process. When we 
finish working on a new feature or app release, we perform end-
to-end testing to simulate the experience of a real user. 

We use similar tools for integration and end-to-end testing 
(DaggerMock, Android Instrumentation Tests, Espresso), but this 
time there is no hermetic environment for every app component. 
Instead, we assume that each place in the app has to be reached 
in the same way that a user would do it — by clicking on the 
interface. 

The price for end-to-end testing is time — the most complex 
scenarios can take up to a couple of minutes to test. But in 
return we cover real use cases (features, navigation flows, third 
party libraries and more), connect to the real API and work on 
real data. 

 

This content is from 
https://medium.com/azimolabs/automated-testing-will-set-
your-engineering-team-free-a89467c40731 


